sabato 29 aprile 2017

Dalle frazioni decimali ai numeri decimali: d, c, m - classe terza

Matematica per gli insegnanti

Vediamo quali sono le situazioni che possiamo incontrare calcolando il valore di una frazione, cioè il quoziente tra il numeratore ed il denominatore.
Vediamo il caso in cui la frazione è apparente.
14/7 = 2                      40/5 = 8
Se la frazione è apparente si trasformerà in un numero intero.

Consideriamo ora le frazioni decimali.
32/100 = 0,32             53/10 = 5,3                 165/1000 = 0,165
Se la frazione è decimale si trasforma in un numero decimale limitato, perché ha un numero di cifre decimali limitato.

Consideriamo ora frazioni non decimali, cioè frazioni ordinarie con denominatore diverso da 10 o da una potenza di 10

3/8 = 0,375                      7/20 = 0,35                             135/50 = 2,7

4/11 = 0,36363636…….     8/15 = 0,533333333…..         6/13 = 0,4615384…….

Possiamo osservare come il primo gruppo di frazioni ordinarie si trasformi in numeri decimali limitati mentre il secondo gruppo dà origine a numeri decimali illimitati perché la divisione tra numeratore e denominatore, anche se proseguita, non avrà mai resto zero, quindi il numero delle cifre decimali del quoziente è illimitato. 
Come possiamo sapere se una frazione ordinaria darà origine ad un numero decimale limitato o illimitato? E’ semplice, basta scomporre in numeri primi il suo denominatore.
Facciamolo per il primo gruppo di frazioni:
8 =  23                 20 = 22 x 5                  50 = 2 x 52
Scomponiamo ora il denominatore del secondo gruppo di frazioni:
11 = 11           15 = 3 x 5                   13 = 13
Una frazione ordinaria irriducibile si trasforma in un numero decimale limitato solo nei casi in cui la scomposizione in fattori primi del denominatore contenga esclusivamente il fattore 2, il fattore 5 o entrambi i fattori.

Bene, centriamo ora la nostra attenzione sui numeri decimali illimitati.
Consideriamo queste frazioni e calcoliamone il valore: 5/9, 10/3, 3/11, 2/27, 5/12, 11/45, 11/12
5/9 = 0,55555……
10/3 = 3,333333…..
3/11 = 0,27272727……
2/27 = 0,074074074……
5/12 = 0,41666666….
11/45 = 0,24444444….
11/12 = 0,91666666….

Vediamo che tutte queste frazioni si trasformano in numeri decimali illimitati. Consideriamo le prime quattro frazioni.
Possiamo vedere come, subito dopo la virgola, una cifra o un gruppo di cifre si ripete all’infinito: la cifra o il gruppo di cifre che si ripete si chiama periodo ed i numeri sono detti numeri decimali illimitati periodici semplici. Per indicare il periodo si mette una lineetta sopra la cifra o il gruppo di cifre che si ripete.

Una frazione irriducibile si trasforma in un numero decimale illimitato periodico semplice se nella scomposizione in fattori primi del denominatore non è presente né il fattore 2 né il fattore 5.
Consideriamo ora le altre tre frazioni.
Vediamo come, in questi casi, il periodo non inizi subito dopo la virgola in quanto tra la virgola ed il periodo è presente una cifra o un gruppo di cifre. Questi numeri sono detti numeri decimali illimitati periodici misti.
La cifra o il gruppo di cifre tra la virgola ed il periodo si chiama antiperiodo e si scrive in questo modo
Una frazione irriducibile si trasforma in un numero decimale illimitato periodico misto se nella scomposizione in fattori primi del denominatore è presente il fattore 2 o  il fattore 5 o entrambi oltre ad altri fattori primi.


Possiamo quindi rappresentare così l’insieme Q+


Possiamo sintetizzare così ciò che si ottiene nelle varie possibilità di trasformazione di una frazione in numero:
La frazione è apparente
Numero naturale
La frazione è ordinaria

Il denominatore contiene solo i fattori 2, 5 o entrambi
Numero decimale limitato
Il denominatore non contiene i fattori 2 e 5
Numero decimale periodico semplice
Il denominatore contiene i fattori 2, 5 o entrambi insieme ad altri fattori
Numero decimale periodico misto


Matematica per gli alunni

COMPETENZE
ABILITA’
UNITA’ DI APPRENDIMENTO
Riconosce e utilizza rappresentazioni diverse di oggetti matematici (numeri decimali, frazioni). Sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto intuire come gli strumenti matematici che ha imparato ad utilizzare siano utili per operare nella realtà.
-  Al termine della classe terza l'alunno dovrà:

individuare l'unità frazionaria in un intero ed in una quantità; trovare la frazione corrispondente ad un intero e a una quantità data; data una frazione individuare la parte corrispondente; leggere, scrivere, confrontare numeri decimali, rappresentarli sulla retta ed eseguire semplici addizioni e sottrazioni, anche con riferimento alle monete o ai risultati di semplici misure.



PERCORSO DIDATTICO

Iniziamo l'attività considerando le frazioni decimali. Possiamo prendere avvio dall'esecuzione di una scheda che ci darà successivamente modo di considerare le frazioni scritte durante l'esercizio.
Fai clic per stampare la scheda.


Spieghiamo che le frazioni che al denominatore hanno 10, 100 e 1000 sono dette frazioni decimali.

1/10 = 1 : 10 l’intero è stato diviso in 10 parti
1/100 = 1 : 100 l’intero è stato diviso in 100 parti
1/1000 = 1 : 1000 l’intero è stato diviso in 1000 parti
Una volta che gli alunni sanno quali sono le frazioni decimali, possiamo procedere alla seconda fase dell'attività. Premetto alla descrizione di questo segmento di lavoro che tutte le immagini successivamente utilizzate si possono stampare facendo clic su questo link.

Br1 e Bass8 ci hanno mandato un loro disegno della città che stanno visitando attualmente. Eccolo:



Lo vogliamo colorare? Lasciamo che gli alunni colorino il disegno e lo incollino sul quadernone. Al termine evidenziamo come gli alunni abbiano colorato 1 disegno intero, quindi possiamo scrivere sotto che si tratta di 1 disegno.

Br1 e Bass8 però oggi ci vogliono aiutare ad imparare una cosa nuova e quindi non si sono mica accontentati di mandarci il disegno che abbiamo appena colorato, ce ne hanno inviato anche degli altri. Ecco, guardate questo disegno. Si tratta di un semplice puzzle.
Consegniamolo agli alunni, chiediamo cosa c’è di diverso rispetto al primo disegno. Si evidenzierà come il disegno sia diviso in 10 parti uguali. Facciamo ritagliare le varie parti, mescoliamole e poi proviamo a ricostruire con precisione il disegno originale e ad  incollarlo sul quadernone. Stavolta coloriamo non tutto il disegno, ma una sola parte.


Noi sappiamo già come indicare questa parte e quindi lo scriveremo sotto al disegno :
con le lettere un decimo
con una frazione decimale 1/10
A questo punto invitiamo gli alunni a riflettere. Si tratta di una frazione molto importante, noi infatti contiamo in base 10. Noi scriviamo i numeri interi usando decine, centinaia, migliaia a cui riserviamo un apposito posto nel numero ed una colonna sull’abaco. Bisognerà allora trovare un posto anche per il decimo, perché anch’esso fa parte della numerazione a base 10. Ma dove?

Prendiamo l’abaco, scriviamo sotto a ogni asta la marca corrispondente. Abbiamo sempre detto che occorrono 10 unità per formare 1 decina; 10 decine per formare 1 centinaio, 10 centinaia per formare 1 migliaio. Possiamo però anche dire che in 1 migliaio ci sono 10 centinaia, che in 1 centinaio ci sono 10 decine, che in 1 decina ci sono 10 unità.
Ora vediamo: che cosa significa 1/10? Secondo voi l’unità che cosa è della decina? E la decina del centinaio? E il centinaio del migliaio? Ma allora per rispettare questa sequenza dove dovremo mettere il decimo delle unità?
Ci verrà indicata la posizione a destra delle unità. Vediamo se è vero: se cambio una decina nella colonna delle unità devo mettere 10 unità, se cambio 1 unità in questa colonna che chiamiamo “dei decimi”, quanti ne devo mettere? Al contrario se nella colonna dei decimi ho 10 decimi, posso sostituirli con…. Molto bene!
Quindi anche ai decimi possiamo aggiungere la marca, che è d per non confonderla con da.

Rappresentiamo sul quaderno l’abaco.
Leggiamo questo numero: 1. Come? 1? Ma allora sono 1 unità? Come possiamo rimediare? Lasciamo provare fino ad introdurre la virgola per separare i decimi dalle unità intere. Il numero alla destra della virgola indica sempre dei decimi, cioè delle parti di unità; quindi scriviamo 0,1 e leggiamo 0 e 1 decimo. Possiamo quindi completare la scrittura precedente per esprimere la parte colorata:
con le lettere un decimo
con una frazione decimale 1/10
con il numero decimale 0,1


Se consideriamo due parti del disegno e poi successivamente le altre avremo:

1/10 – 2/10 – 3/10, ecc.
0,1 – 0,2 – 0,3.
Quanti d occorrono per formare un’unità intera?
Si possono a questo punto proporre alcune attività, da eseguire prima sempre collettivamente, per consolidare ed approfondire quanto appreso.
Ad esempio, scrivere numeri sotto forma di frazione e di numero decimale.


Spieghiamo anche, con opportuni esempi, come si possano scrivere quantità sotto forma di numero decimale.


Chiariamo bene agli alunni come i decimi siano parti di unità e posizioniamoli sulla linea dei numeri alla lavagna. Con l'aiuto della linea dei numeri facciamo eseguire numerazioni.


Proponiamo anche qualche esercizio di scomposizione.

---------------------------------------------------------------------------------------------
Vi ho detto che Br1 e Bass8 oggi vogliono stupirci. Ecco, guardate quest’altro disegno. Anche in questo caso si tratta di un puzzle.
Consegniamolo agli alunni, chiediamo cosa c’è di diverso rispetto al primo disegno. Si evidenzierà come il disegno sia diviso in 100 parti uguali. Facciamo incollare anche questo sul quadernone. Anche stavolta coloriamo non tutto il disegno, ma una sola parte.


Vediamo come possiamo indicare questa parte e quindi lo scriveremo sotto al disegno :

con le lettere un centesimo
con una frazione decimale 1/100
Anche stavolta fermiamoci a riflettere: il centesimo che abbiamo appena colorato che parte è del decimo? E del disegno intero? Quale sarà la sua posizione sull’abaco? Essendo 10 volte più piccolo del decimo metteremo i centesimi a destra dei decimi e li chiameremo c per non confonderli con le centinaia. Rappresentiamo sul quaderno l’abaco.
E quindi come lo indicheremo con i numeri decimali?

Abbiamo unità intere? Abbiamo un decimo intero? Abbiamo un centesimo intero? Quindi 0,01 che leggeremo 0 e 1 centesimo.
Possiamo quindi completare la scrittura precedente per esprimere la parte colorata:
con le lettere un centesimo
con una frazione decimale 1/100
con il numero decimale 0,01
Se consideriamo due parti del disegno e poi successivamente le altre avremo:

1/100 – 2/100 – 3/100, ecc
0,01 – 0,02 – 0,03, ecc 
Quanti c per formare un’unità intera? E per formare 1 d?
Anche per i centesimi proponiamo attività di consolidamento, sempre avendo cura di esemplificare prima alla lavagna attraverso esercizi collettivi.
- Ho 85 centesimi; quanti centesimi mancano per avere una unità?
- Se da un'unità tolgo 1 centesimo, quanti centesimi mi restano?
- Scrivi sotto forma di numero decimale: 27100, 4/100, 26/100, 8/100, 39/100, 100/100
- Scrivi sotto forma di numero decimale:
1 u, 2 d, 4 c =
1 u e 5 c =
4 d e 6 c =
3 da, 1 u, 2 d, 4 c =
2 da e 4 c =
1 h, 3 u, 5 c =
6 c =
34 c =


Ed ecco infine l’ultimo puzzle che ci hanno inviato Br1 e Bass8.
Consegniamolo agli alunni, chiediamo cosa c’è di diverso rispetto agli altri disegni. Si noterà come il disegno sia diviso in 1000 parti uguali. Facciamo incollare il disegno sul quadernone e coloriamone una sola parte.



Vediamo come possiamo indicare questa parte e quindi lo scriveremo sotto al disegno :
con le lettere un millesimo
con una frazione decimale 1/1000
Anche stavolta fermiamoci a riflettere: il millesimo che abbiamo appena colorato che parte è del centesimo? Del decimo? E del disegno intero?
Quale sarà la sua posizione sull’abaco? Essendo 10 volte più piccolo del centesimo metteremo i millesimi a destra dei centesimi e li chiameremo m.
Rappresentiamo l’abaco sul quaderno.

E quindi come lo indicheremo con i numeri decimali?
Abbiamo unità intere? Abbiamo un decimo intero? Abbiamo un centesimo intero? Abbiamo un millesimo intero? Quindi 0,001 che leggeremo 0 e 1 millesimo.
Possiamo quindi completare la scrittura precedente per esprimere la parte colorata:
con le lettere un millesimo
con una frazione decimale 1/1000
con il numero decimale 0,001

Se consideriamo due parti del disegno e poi successivamente le altre avremo:
1/1000 – 2/1000 – 3/1000
0,001 – 0,002 – 0,003.
Quanti m per formare un’unità intera? E per formare 1 c? E per formare 1 d? Osserviamo quindi come i numeri decimali siano formati da una parte intera e da una parte decimale, separate dalla virgola. Fai clic per stampare la casa dei decimali.



Un altro esercizio.


Una scheda.


Una verifica scritta da stampare

Un test/gioco on line per i tuoi alunni


Ulteriori risorse dal Web


lunedì 24 aprile 2017

Frazioni di quantità discontinue e calcolo della parte frazionaria - classe terza

Matematica per gli insegnanti

Abbiamo visto che spesso si parla di quantità continue e di quantità discontinue o discrete. Di che si tratta? Cito da Wikipedia:
Una definizione (forse) intuitiva, anche se molto informale e imprecisa, è la seguente: un oggetto è considerato discreto se è costituito da elementi isolati, cioè non contigui tra loro, mentre è considerato continuo se contiene infiniti elementi e se tra questi elementi non vi sono spazi vuoti. 
Matematica per gli alunni

COMPETENZE
ABILITA’
UNITA’ DI APPRENDIMENTO
Riconosce e utilizza rappresentazioni diverse di oggetti matematici (numeri decimali, frazioni). Sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto intuire come gli strumenti matematici che ha imparato ad utilizzare siano utili per operare nella realtà.
-  Al termine della classe terza l'alunno dovrà:

individuare l'unità frazionaria in un intero ed in una quantità; trovare la frazione corrispondente ad un intero e a una quantità data; data una frazione individuare la parte corrispondente.


PERCORSO DIDATTICO

Abbiamo visto le frazioni di quantità continue, ma le frazioni sono anche usate per indicare parti di quantità discontinue. Proviamo ad esempio a considerare ½ della classe per l’effettuazione di un gioco in palestra, dovremo dividere la classe in 2 sottoinsiemi equipotenti e poi considerarne uno. Prendiamo ora ¾  dei 24 pennarelli che sono in questa scatola, dobbiamo dividere i 24 pennarelli in 4 sottoinsiemi equipotenti e poi considerare 3 dei sottoinsiemi così formati. Dopo alcuni esempi a livello manipolativo operiamo solo su insiemi rappresentati.




Dobbiamo ora scoprire la regola per calcolare la parte frazionaria di un numero.

Cominciamo considerando le unità frazionarie.
Br1 e Bass8, come sappiamo, sono in una metropoli, attratti dalle possibilità che questa offre. Ad esempio, la grande città offre molte possibilità di passare il tempo libero dedicandosi ad attività ricreative, culturali, sportive.
Infatti i due, giorni fa, sono entrati in un museo per ammirare i dipinti qui esposti. In una grande sala che contiene 28 quadri, i nostri due amici ne hanno già visti 1/7. Quanti quadri hanno visto?
Proviamo ancora con il disegno, riallacciandoci così all'attività precedente e poi vediamo invece come dovremmo operare per calcolare il risultato senza l'aiuto del disegno: dovremo dividere i 28 quadri in 7 parti uguali e considerare una di queste parti. Con i numeri:
28 : 7 = 4 valore di 1/7



Vediamo alcuni altri esempi insieme e poi con lavoro individuale.



Dopo aver visto come calcolare le unità frazionarie, estendiamo il discorso al calcolo delle parti frazionarie.
Successivamente alla visita del museo, i nostri due amici sono entrati in una palestra, dove sono stati immediatamente presi in consegna da un arcigno istruttore che li ha fatti subito salire sulla cyclette e pedalare per 15 minuti. Dopo ciò, i nostri sono stati messi a fare degli esercizi per gli addominali. Dovevano fare 30 esercizi, ma giunto ai 4/6 Bassotto è crollato stremato. Quanti sono gli esercizi che Bassotto è riuscito a fare? Lasciamo provare ed operare gli alunni nel tentativo di giungere alla risposta. Se gli interventi degli alunni prendono strade, per così dire, indesiderate, facciamo notare che sappiamo già come il denominatore 6 indichi in quante parti va diviso l’intero. Tutti gli esercizi dovevano essere 30, 30 : 6 = 5 che è il valore di una delle parti ottenute; il numeratore 4 indica quante parti devo considerare, quindi 5 x 4 = 20.
Sintetizziamo con i numeri: 30 : 6 = 5 5 x 4 = 20
Bè, non è proprio in grande forma Bassotto, è riuscito a compiere solo 20 esercizi per gli addominali. 
Finito questo, i nostri due eroi, già ansimanti, sono stati messi sul tapis roulant e l’istruttore ha impostato un programma di 20 minuti. Stavolta è stato Br1 ad arrendersi dopo aver corso i ¾ dei minuti previsti. Per quanti minuti è riuscito a correre Br1?



Vediamo collettivamente ancora un caso:
Durante la prossima gita scolastica per l’ingresso a Cowboyland la nostra classe deve pagare € 450. Dobbiamo però versare come caparra i 3/10. Quanto dobbiamo versare? 



Possiamo ora proporre esercitazioni individuali.
“Elias ha letto i ¾ delle pagine di un libro di avventura di 260 pagine. Quante pagine ha letto?”.

“Un negoziante ha comprato 135 uova. Durante il trasporto ne ha rotte 1/5. Quante sono le uova rotte?”

Possiamo proporre anche una scheda come questa. Fai clic per stamparla.



Ecco un'attività che può essere svolta on line.


Una verifica scritta da stampare

Un test/gioco on line per i tuoi alunni

Ulteriori risorse dal Web


giovedì 20 aprile 2017

Frazioni di quantità continue - classe terza

Eccoci giunti agli argomenti della sesta U. A. "La città".
Anche stavolta rendiamo partecipi gli alunni dei traguardi da raggiungere al completamento dell'unità di apprendimento ed elenchiamoli siul quaderno.
Al termine del sesto percorso "La città" dovrai aver imparato a:

• Conoscere ed usare le frazioni
• Conoscere ed usare i numeri decimali
• Conoscere ed usare i sottomultipli dell’euro
• Conoscere ed usare le misure di capacità
• Risolvere problemi sul S.M.D.


Matematica per gli insegnanti

Guardiamo questa figura.
Vediamo che abbiamo considerato 4 volte l’unità frazionaria 1/6
1/6 + 1/6 + 1/6 + 1/6 = 4/6

Se invece osserviamo quest’altra figura:
vediamo che abbiamo considerato 3 volte l’unità frazionaria ¼
¼ + ¼ + ¼  = ¾

4/6, ¾ sono frazioni
La frazione è quindi un operatore che divide un intero in parti uguali e ne considera alcune di esse.

Ora consideriamo invece la frazione come quoziente tra due numeri, il numeratore ed il denominatore.
2/5 = 2 : 5

Consideriamo per un momento i numeri naturali e scopriremo che qualunque numero naturale si può scrivere sotto forma di frazione.
Cominciamo dallo “0”: si può scrivere come una frazione avente “0” al numeratore. Infatti:
0/4 = 0 : 4 = 0
0/6 = 0 : 6 = 0
Passiamo al numero 1: si può indicare con una frazione apparente con numeratore uguale al denominatore
3/3 = 3 : 3 = 1
5/5 = 5 : 5 = 1
Tutti gli altri numeri naturali si possono scrivere con una frazione con denominatore 1
10/1 = 10 : 1 = 10
7/1 = 7 : 1 = 7
oppure
con una frazione avente al numeratore un multiplo del denominatore. Ad esempio se io volessi scrivere il numero 15 sotto forma di frazione potrei scrivere così: 15/1, 30/2, 45/3, ecc

Considerando la frazione come quoziente tra due numeri, possiamo quindi stabilire un nuovo insieme che includerà tutte le frazioni. Chiameremo questo insieme come insieme Q+.
Da quanto detto sopra possiamo facilmente capire come l’insieme dei numeri naturali N sia un sottoinsieme dell’insieme Q+ ed indicheremo questa relazione così: N Ì Q+.

Matematica per gli alunni


COMPETENZE
ABILITA’
UNITA’ DI APPRENDIMENTO
Riconosce e utilizza rappresentazioni diverse di oggetti matematici (numeri decimali, frazioni). Sviluppa un atteggiamento positivo rispetto alla matematica, attraverso esperienze significative, che gli hanno fatto intuire come gli strumenti matematici che ha imparato ad utilizzare siano utili per operare nella realtà.
-  Al termine della classe terza l'alunno dovrà:

individuare l'unità frazionaria in un intero ed in una quantità; trovare la frazione corrispondente ad un intero e a una quantità data; data una frazione individuare la parte corrispondente.


PERCORSO DIDATTICO

Iniziamo le attività didattiche sulle frazioni considerando in un primo tempo il frazionamento di quantità continue.
Partiamo da una situazione concreta: ho un foglio da distribuire in parti uguali a 3 alunni. Come fare?

Non sempre abbiamo bisogno di un oggetto intero, a volte abbiamo bisogno di parti di oggetti. E, a questo, proposito, è importante far capire agli alunni la differenza fra spezzare e frazionare.
Io posso spezzare una quantità intera in parti disuguali (ad es. mi cade a terra un piatto).
Se da una torta taglio una fettina, l’ho divisa in due parti disuguali oppure posso dividere la stessa torta in 4-6-8 parti uguali. Quando io divido un intero in parti esattamente uguali  dico che “fraziono”, che vuol dire dividere in parti uguali. Facciamo molti esempi concreti con frutti, cartoline, fogli, cartoncini, mostrando la differenza fra spezzare e frazionare.

Br1 e Bass8 sono abilissimi nel frazionare, infatti nella loro Galassia li chiamano Super Frazionatori.

Ora, si da il caso che, essendo ormai da molto tempo nella fattoria di Ambrogio, i due hanno approfittato di un giorno di ferie per andare a visitare una delle grandi città che costellano la pianura. E non vi dico la loro sorpresa nel trovarsi in una grande metropoli. Come prima cosa sono entrati in un grande supermercato e Bass8 si è diretto subito verso i banchi della frutta, attratto dalla bellezza delle mele qui presenti. Ignaro di come funzionano le cose nei nostri negozi, Bass8 prende una mela tra le mani e si chiede “Sarà più buona di quelle che coltiviamo noi per Ambrogio? Quasi quasi l’assaggio!” Detto, fatto, prende un coltellino e la divide in un istante in 4 parti perfettamente uguali. Ecco, fa così (prendiamo una mela ed imitiamo Bass8). Afferra una delle quattro parti e sta per portarla alla bocca, quando arriva un commesso incollerito che gli urla “Posi subito quella mela. Lei si è preso una mela!”. E Bass8, calmissimo: “ Guardi che non è vero, io non ho in mano una mela!” Il commesso: “Ah, no, eh! E quella cos’è, non è una mela?” “No, non è una mela!” risponde serafico il nostro amico.


Chi ha ragione, secondo voi e perché? Ascoltiamo cosa hanno da dire gli alunni, che, probabilmente, non si soffermeranno sull’aspetto matematico della faccenda. E allora li inviteremo noi a riflettere.
Come ha fatto Bass8 abbiamo già frazionato in 4 parti uguali la mela, ora prendiamo una delle parti ottenute, chiamiamo un alunno e diciamogli di scrivere con un numero la quantità che ho in mano.

Facciamo riflettere: posso scrivere 1? No, perché non è la mela intera. E’ stato stabilito un modo particolare di scrivere questo numero, perché per sapere quale parte di mela ho in mano devo sapere in quante parti è stata divisa e quante parti ho preso. Allora traccio una lineetta che significa che ho frazionato un intero, sotto scrivo il numero delle parti in cui ho frazionato l’intero e sopra la parte che ho considerato: leggo un quarto.





Prendiamo ora 2 parti della mela, poi 3 e 4 e chiediamo di scrivere la frazione corrispondente. Allora chi aveva ragione? Aveva ragione il commesso perché non si possono usare le merci esposte, ma aveva anche ragione Bassotto perché non aveva in mano una mela, ma ¼.
 


Frazioniamo altri oggetti in modi diversi ed ogni volta chiediamo qual è e come si scrive la frazione che rappresenta la parte che consideriamo.
Consegniamo ad ogni alunno un foglio intero, dividiamo a metà, a metà della metà, in ottavi.


Facciamo usare anche i regoli: prendiamo il regolo arancione. Quale regolo è ½ del regolo arancione? Quale regolo è 1/3 del blu? Quale è ¼ del marrone, quale è 1/6 del verde scuro?
Proponiamo ora un lavoro su scheda. Fai clic per stampare la scheda.




Prepariamo 9 dischetti di carta o cartoncino, già predisposti per essere suddivisi in parti uguali. Prendiamo il primo dischetto di carta, lo frazioniamo in 2 parti e ne prendiamo in mano una, chiamiamo un alunno e diciamo di scrivere con una frazione la quantità che consideriamo. Procediamo al medesimo lavoro anche con gli altri dischetti, frazionandoli in 3, 4, 5, ecc parti uguali. Se vuoi stampare i dischetti fai clic qui.

Parallelamente procediamo sul quaderno usando una scheda apposita, come questa.


Fai clic per stampare la scheda per l’esercizio degli alunni. Al termine osserviamo che le frazioni ½, 1/3, ¼, 1/5, ecc sono unità frazionarie perché indicano una sola delle parti ottenute frazionando un intero e che più aumenta la cifra del denominatore più diminuisce la parte considerata: ½ >1/3 >¼ > 1/5 > 1/10.
Proponiamo esercizi di confronto e di ordinamento di unità frazionarie.



Ecco un gioco da svolgere on line: topo affamato. L' obiettivo del gioco è di associare correttamente la rappresentazione numerica di una frazione con la sua rappresentazione grafica. In questo gioco sei nei panni di un topolino affamato che deve mangiare per crescere. Devi scegliere però la frazione corretta fra quelle proposte per avere la tua razione di formaggio. E' possibile avere frazioni con denominatore generato casualmente oppure specificarlo (da 4 a 10).

Giochi-free.it - il portale di giochi Gratis Online, giochi Flash !

Giochi-free.it - il portale di giochi Gratis Online, giochi Flash !

Una verifica scritta da stampare

Un test/gioco on line per i tuoi alunni

Una lezione per Lim sulle frazioni di quantità continue
 
Ulteriori risorse dal Web